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Abstract. We review the construction of generating functions for WZNW (Wera- 
Zumino-Novikov-Witten) fusion rule and present the explicit form of the generating 
functionforG(5). In addition to providingacompactandmanifestlypositiveexpre* 
sion for the G ( 5 )  fusion rules at all levels, this result illustrates a general conjecture 

finite Lie algebra tensor products. 
O n  thP rs!ntinn hc!.wPPn t h P  gPnPm!.ing fundinn lor WZNW fileinn rtdcr and that for 

1. Introduction 

In a rational conformal field theory, the fusion coefficient counts the number of inde- 
pendent couplings between three given primary fields. It can also be thought of as 
arising from a product x defined as 

X x p = @NAP”” 
Y 

where A ,  p and U denote primary fields. NAP“ is a fusion coefficient and (1.1) is known 
as a fusion rule. 

The building blocks of a large class of unitary rational conformal field theories 
are the Wess-Zumino-Novikov-Witten ( W Z N W )  models. The current algebra of these 
models is an affine Kac-Moody algebra; a t  integer level k. The WZNW primary fields 
are in one-to-one correspondence with integrable representations of s  ̂at  level k [l, 21 
(so that both may be specified by the same symbol). Over the past years various 
methods have been proposed for the calculation of WZNW fusion rules. These are 
reviewed briefly later, after we have introduced some notation. 

Nolalion. If wp ( p  = 
0,1,. . . , r = rank(g)) are the fundamental weights of C, then an affine weight may 
be written as A = )-,=oAP~’ =: [ X o , A l , .  . . , A , j .  We can associate with such a 
weight X a weight i of the finite algebra g: i = E:=, X,W’ =: (XI,. . . , A r ) ,  where 
W’(i = 1, .  . . , r )  are the fundamental weights of g. We call A the finite part of A.  The 
level k of the weight A is k = CL=, A,kV” where the kv’ are the co-marks (ICvo := 1, 
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Let g denote the horizontal finite Lie subalgebra of i .  
-? 
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and the remaining k"' are the coefficients of expansion of the longest root of g- 
denoted by &in terms of the simple co-roots). So, given we can always reconstruct 
X for a fixed level k. We also call A the affine extension of x. 

If an affine weight X has Dynkin labels obeying A, E Z, and is of level k, it is the 
highest weight of an integrable representation at level k. The set of such weights is 
denoted P:. The highest weights of integrable representations of g have Dynkin labels 
Xi E Z,(i = 1,. . . , r). The set of all such integrable weights of g is denoted P+. Note 
that if X E P: then i E P,, but the converse is not generally true. i E P+ does not 
imply A E P:, since A may have negative Xo if k is sufficiently small. Another way of 
saying this last point is P: C P+. 

Finally, we denote by Cu the highest weight of the representation conjugate to 
that of U. Equivalently it indicates the primary field that is the charge conjugate of 
the primary field U. In the following we use the relation NAP" = NApCv. 

1 . 1 .  The  depth rule of Gepner  and Wi l t en  

Let us denote by Nxp' the tensor product coefficients associated with the product 
@ p, where i is the finite part of A ,  etc. Then the depth rule [Z] is the statement 

that NAlrv = 0 if one of the following two conditions is satisfied: 
. 

Nxpy = 0 ( l . l a )  

d,, + d,, + d,. > k ( l . l b )  

Here A' is a weight in the representation whose highest weight is A (similarly for p' 
and U'). d,, is its depth. Strictly speaking, the depth of a weight does not make sense. 
However, to each A' one can associate a number of states IA'(i)) in the g representation 
A ,  the number being equal to the multiplicity of A'.  The depth of a state I A ' ( i ) )  is 
simply the maximum number d,,(il such that (J-oo)dAt(+lA' ( i ) )  # 0, where J - m o  is 
the lowering operator corresponding to the zeroth simple root a,,. 

Now in order for A', p' ,  U' to be a triplet of weights relevant to the coupling A x p x U 
it is necessary that x' + p' + Y' = 0 since we want x @ p @ fi = 0 e . .  ., but i t  is not 
sufficient. We must furthermore have a coupling between lA'(m)), I$(.)), lu ' (p ) ) .  If 
one can associate a coupling to this triplet of states, then the corresponding WZNW 
coupling will not exist if k < dAltm1 + d P r ( " )  + d u , j p ,  

The practical implementation of this rule is intricate. First, the depths themselves 
are difficult to calculate. Furthermore, it is hard to specify the triplets of states 
lA'(m))[p'(n)) lu'(p))  that correspond to agiven g-coupling. Up to now the depth rule 
has been used to calculate fusion rules for sG(2)  121, and some examples (at low levels) 
in sG(3) [2] and E8 131. 

Further discussion of this rule  has been presented by Gepner in [4] and will be 
reported in [5]. 

1.2.  The Verlinde fo rmula  

Verlinde [6] discovered that the fusion rules are diagonalized by the modular transfor- 
mation S : r - -1fr. If SA( describes how characters transform, one consequence is 
the following formula for the fusion rules 

where A' + p' + U' = 0. 
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where the subscript 0 indicates the identity primary field (i.e. kw').  From this formula, 
i t  is not obvious that NAFV E Z, since the matrix elements of S may be complex 
numbers with irrational real and imaginary partst. 

1.3. Using the afine Weyl group 

The Weyl group of g may be used to calculate in an efficient way the tensor product 
coefficient N [7]. To calculate the fusion coefficients, the Weyl group of;  (the affine 
Weyl group) may similarly he used. The algorithm proposed in [SI (see also [9]) leads 
to the following relation between the fusion rules and the tensor product coefficients 
[lo-121: 

N,," = Nxpcc(w). (1.3) 
C€P+ 
w e = "  

w is an element of the affine Weyl group, of sign ~ ( w ) ,  and the dot indicates the shifted 
action, i.e. w.X = w(X + p )  - p where p = E;=, w p .  This seems to be the simplest 
way of calculating WZNW fusion rules. A drawback of this formula is that it is not 
manifestly positive. It does, however, make clear that NAP, E Z. 

1.4. Generating functions 

A generating function for fusion rules is a sum over all possible couplings whose ex- 
pansion in power series allows us to read off the coefficients NAP.. I t  may he written 
in a manifestly positive form, showing clearly that NAP" E 2,. Generating functions 
for WZNW fusion rules were introduced in [13] and explicit examples were given for 
sG(2) and sG(3). They provide an elegant and compact presentation of the fusion rules. 
However, this approach also has its drawbacks. First, one needs to know the corre- 
sponding generating function of the tensor product coefficients. But these are known 
only for the lowest rank Lie algebras, since their complexity increases very quickly 
with the rank. Second, the generating function for fusion rules is related l o  one$ 
of the possible manifestly positive expressions of the generating function for tensor 
product coefficients. But there is no way (I priori of selecting the required manifestly 
positive form. (This will be discussed in more detail in the next section.) 

For completeness we should say that WZNW fusion rules can also he calculated 
from Wakimoto type free field representations (141. Also, for 4 3 )  manifestly positive 
combinatorial methods have been found by Cummins 115) and Lu 1161. 

In this work we present further results on the fourth approach. More precisely, 
we provide a new example of a generating function for WZNW fusion rules, that for 
5 = sC(5), in a manifestly positive form. It is displayed in section 3 .  Although we do 

t Indeed, up to a constant (fixed by unitarity) the modular matrix S lor ŝ  reads [ I I ,  211 

where gL is the dual Coxeter nuniber, c(w)  is the sign of the Weyl group element w and W ( g )  is the 
finite Weyl group. 
i More precisely, i t  could be related to more than one although one is enough. 
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not have a formal proof of its validity, it has been tested to a sufficiently high order 
(k <11) to make us confident i t  is correct. We tested it by comparing i t  with the 
results obtained from formula (1.3).  For completeness, in an appendix, we illustrate 
the latter method, incliiding the calculation of N by Young tableaux. Our new example 
of a WZNW fusion rule generating function provides a non-trivial test of the general 
conjectures formulated in [13], reviewed in section 3. Section 2 contains the necessary 
information on generating functions for tensor product coefficients. 

2. Generating functions for tensor product coefficients 

The generating function for tensor product coefficients is given by a sum over all 
possible couplings [17] 

where 

and similarly for MO and NO 
For example the generating function for g = su(2) (r  = 1)  reads [17] 

G = [(l - L , M l ) ( l  - L I N l ) ( l  - M I N I ) ] - ' .  (2.3) 

To read off coefficients one expands all the terms in a power series and compares them 
with (2.1). More explicitly, suppose that we want to find the tensor product (Al)@(pl). 
Then in the series expansion we collect all the terms of the form L ; l M / L N [ l .  All 
the values of u1 which we encounter in this way are those which appear in the tensor 
product of (A,) with ( p , ) .  For example i t  is very easy to see that the only terms 
containing exactly one factor of L ,  and one factor of M ,  are L,Ml and LIM,N:  
which means that (1) @ ( 1 )  = ( 0 )  fE (2). The simplicity of the generating function 
follows from the fact that any coupling can be written as a product of elementary 
couplings. For su(2) these elementary couplings are 

E ,  = L,Ml E,  = L , N ,  E3 = M I N I .  (2.4) 

Let us consider another example. The generating function of g = su(3) (r = 2) is 
~ 7 1  

G = [ ( l -  L l N , ) ( l -  L , M I ) ( l -  M,N,)(I  - L I M , N , ) ( l -  L,M,N,)]-' 
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Notice that  this is a manifestly positive expression. For 4 3 )  there are eight elemen- 
tary couplings: 

E, = L,M, E ,  = L,N, E3 = M l N 2  

E ,  = L,M, E,  = L,N, E ,  = M2N,  (2.6) 

E, = L,M,N, E, = L,M,N,. 

In contrast to the 4 2 )  case, this generating function cannot be written in the form 
ni(l - Ei)-I. This is because the expression for a given coupling as a product of 
elementary couplings is in general not unique. These redundancies are called syzygies. 
They can be avoided by forbidding certain couplings, but this choice is not unique. 
Different sets of forbidden couplings yield different manifestly positive forms of G. Of 
course these different forms must all be equivalent: G as a function of the variables 
L;, Mi and N; is unique! For example the expression (2.5) is obtained by forbidding the 
coupling E,E,E,. To see this explicitly, let us rewrite (2.5) in terms of the elementary 
couplings: 

It is clear that in expanding this form, we will never encounter a term containing a 
product of the three factors E,E3E,. (The factors in the numerators are necessary to 
avoid overcounting.) Now since, for instance ElE3E,  = E7E,, we could equivalently 
forbid the coupling E,E,, yielding 

. 
m. inen cieariy no factors containing E,E, can appear. Tnereiore, aiihough G(i, M-,Nj 
is unique, its expression in terms of the Eis is not, because the syzygies may be used 
in different ways. 

As a final example we present the generating function for g = so(5) = sp(4) (r = 2) 
[18]. We choose the first root to be the short one. The expression for G given in [ l S ]  
is 

G = [ ( l -  M,N,)( l  - L I N , ) ( l  - L I M l ) ( l  - M,N,)(l - L2N,)(1 - L2MZ)I-l 

X 1 L,M,N? 
((1 - L,MIN, ) ( l  - L,MfN,) + ( 1  - L2MlN, ) (1  - L,M,N:) 
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A convenient basis for the elementary couplings is 

A,  = M,N, A, = L,N,  A,  = L,M, 

B ,  = M,N, B, = L,N, B3 = L2M,  

C, = L 2 M l N ,  C2 = L,M2Nl C, = LlM,N2  

D,  = L:M,N, D,  = L,M:N2 D, = L,M,Nt. 

(2.10) 

This expression for G follows by forbidding the following set of couplings 

{C,Cj, D i D j ,  CiDi}  i, j = 1,2,3 and i # j .  (2.11) 

Thus nine couplings must be forbidden. But again this set is far from unique. In the 
following we will use the compact notation 

8, := ( 1  - Ei)- l  (2.12) 

in terms of which (2.9) reads 

/ 3  
G = (nAi.,) (elfi2 + D,d,fi, + C2Dle2fiI + C2c2zi)3 + Dle3b, + C3c3E2). 

,=1 

(2.13) 

3. Generating functions for fusion ru les  

We define fusion rule generating functions as follows [13] 

m 

G ( L , M , N ; d )  = Edk E NAP,L'MpNN' (3 .1)  
r=" A,p,.€P$ 

where the extra dummy variable d keeps track of the level. 
Let us now review how this generating function can be constructed from G, ac- 

cording to the general conjectures presented in [13]. The first conjecture is that  each 
three-point coupling in a WZNW model exists for levels k > k, where k, is a certain 
minimum level. Now let ei be the minimum level for the elementary coupling E,. The 
second conjecture in [13] is that there always exists a set of forbidden couplings for 
which G and G are related in  a simple way. Let F be this appropriate set of forbidden 
couplings and denote by G,(Ei) the corresponding manifestly positive expression for 
the tensor product coefficients. Then the conjectured relation between G and G is 

G ( L ,  . .  M ,  N I  d )  = (1  - d)-'C"de'E:) (3.2) 

The factor (1 - d ) - I  takes care of the elementary coupling of three scalars which is 
present a t  all levels. This provides a manifestly positive and compact expression for 
the fusion rules. 
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For 4 2 )  there are no forbidden couplings and the elementary couplings all have 
minimum level equal to  1, which yields [13]: 

G ( L , M ,  N ;  d )  = ( l -d)- '  n (G.) = [( l-d)(l-dLIM1)( l-dL,N,)(l-dM,Ni)]-'.  
3 

i = l  

(3.3) 

It is easy to  show that this reproduces the correct sC(2) fusion rules a t  all levels [Z, 191. 
The su(2) fusion rules coincide with the tensor products, except for the 'truncation 
from above'; the fusion coefficient vanishes unless 2k A, + p1 + v,. This result leads 
directly to  (3.3).  

For su(3), ei = 1 again for all elementary couplings, but now there are essentially 
[i.e. up to  charge conjugation) two possibilities for the forbidden couplings. These 
lead to two different manifestly positive forms for G: (2.7) and (2.8). These two f o r m  
can be written compactly i n  a non-manifestly positive way as 

/ s  \ 

G =  n E i  ( 1 - F )  
( i l l  

(3.4) 

where F is the  forbidden coupling, that is either E1E3E5 or E,E,. Now if we apply 
the prescription (3.2) we obtain 

G = d n ( d E , ) ( l -  d Q F )  
i=1 

where 

a = 2  if F = E,E, 

a = 3  if F = ElE3E, 

(3.5) 

Therefore in order to  completely fix G, we only have to analyse the coupling 
L,L,M,M,iV,N, to  see which of the two possible values of Q yield the correct re- 
sults. It is simple to  verify that 

( 1 , 1 ) @ ( 1 , 1 )  = ( 0 ~ 0 ) ~ ' 3 ( 1 ~ 1 ) z f €  ( 1 , 1 ) ~ ~ ( 3 , 0 ) ~ ~ ( 0 , 3 ) 3 ~ ( 2 , 2 ) ~  (3.7) 

p i n t ,  coupling is a!!owed_, Thus onp coql ing  LiL2Mi.Mi.PJiNi arises a t  !eve! 2 &Ed 
where the subscript indicates the value of k,, the minimum level a t  which the three 

another appears a t  level 3. Now the piece dni(Gi) already yields one such coupling 
at level 2 but two a t  level 3. Thus  one factor d 3 L , L , M , M , N , N ,  must be cancelled, 
which fixes the value a to be 3 so that the correct choice of F is E,E,E, [13]. That  this 
indeed gives the correct form of the generating function for 4 3 )  has been established 
rigorously in [15]. 

Let us now turn to the main subject of this work, the derivation of the WZNW 
generating function for so(5). The first natural test is to  apply the prescription (3.2) 
to  the form (2.13). I t  is easy to verify that elementary couplings A,,&', and C, have 
minimum level one while the D,s have minimum level 2 .  Thus we just multiply 
all elementary couplings by the appropriate power of d and multiply the result by 
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(1 - d)- ' .  However if we look at the coupling 
(1,1)(1,1)(2,0) one can see readily that this is not the correct choice. Indeed one has 
(see appendix) 

(121) 8 (1 ,1)  = ( 0 1 0 ) ~  fB (031)a fB (2,0)2 fB (0,2)3 fB (2,0)3 fB (0,313 t3 2(2,1)3 

This is then a candidate for G. 

fB (2,214 fB (4,0)4, (3.8) 

Hence (2,O) must appear a t  ievei 2 in the product ( 1 , l )  8 ( 1 , l )  which means that  a 
term daL,  L,M,M,N? must appear in the power series expansion of G. However the G 
constructed from (2.13)-which corresponds to the set of forbidden couplings (2.11)- 
does not contain such a term. The lowest power of d multiplying L,L,M,M,N: that  
it produces is 3, and i t  comes from the coupling A3D3. 

The only way ofobtaining the coupling L,L,M,M,N~ at  level 2 would he from the 
product C,C, (which would then come with a factor d2). But with the choice (2.11), 
this is forbidden. Therefore one must look for an other set of forbidden couplings 
which would not include CiCj. Reference [18] gives us the syzygies. The relation 
important to us is that CiC, is a linear combination of A,D, and A,AjBk (here i j k  
are 123 in any order). So, instead of (2 .11 )  we consider the set 

{AkD,  DiDj C , D ; ] .  (3.9) 

We found that the corresponding G could he written in essentially two equivalent 
ways: 

(3.10) 

with 

s = CIC2C3 or A 2 A 3 B 1 C 1  (3.11) 

(where the second case could appear with the indices permuted). When written in 
terms of the L, ,M,  and N,, it gives the same result as (2.13). With the replacementt 
Ei -+ d"Ei, ClC,C3 will appear with a factor d3 while A2A3B,C, will have a d4. 
Thus one only has to go to level 3 and look at  the coupling L ~ L . , M ~ M , N : N ,  = 
(2,1)(2,1)(2,1) in order to decide which is the correct choice. (Of course, before we 
checked this, we checked that everything comes out right a t  level 2). The tensor 
product ( 2 , l )  @ ( 2 , l )  gives, with the values of k ,  inserted, 

(211) 8 (291) = (0,0)3 fB (0,1)3 fB (0,2)3 fB (2 ,0)3 fB (2,1)3 fB 2(2,1)4 (0,214 fB (0,3)4 

fB (0,4)4 @(2,0)4@ 2(2,2)4 fB (4,0)4 @(2,2)5 fB(2,3),@(4,0),  fB2(4,1)5 

fB (42 2), fB ( 6 , u ) c .  (3.12) 

t Here we are using the fact that for both choices of S ,  G may be rewritten as a manifetly positive 
expression in terms of the E i .  
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Hence one coupling (2,1)(2,1)(2,1) appears at level 3 and two more a t  level 4. Clearly 
in order to have one such coupling at level 3 we should not choose S = ClC2C, 
since that would cancel the contribution d3C,C2C3 coming from ni(dT). Thus one 
must take S = A,A,B,C, (or one of the other two equivalent expressions obtained 
by permuting indices). We then checked that all the other couplings at  level 4 are 
correctly described by this function. 

Thus we have a candidate for G, constructed from the general prescription (3.2) 
with a suitable choice of forbidden couplings, which works at  least up to level 4.  It 
can be written in a manifestly positive form as: 

1 
2 for Di 

for A i ,  Bi , Ci G = ( 1  - d) - ’G(dCsEi )  ei = { 
G = B~B3(AlA3BlClC2C3 + A~A,A,B,C,C,C~ + A~A~A,A,A~C,C,C, 

+ A , A ~ B , A , , ~ ~ A ~ B , C ~ ~ ~  + D , A ~ A ~ B ~ C ~ ~ ~ D ~  + D ~ A ~ A ~ B ~ C ~ C ~ D ~  
+ D3Al A,B, C, C2D3). (3.13) 

We have tested this generating function up  to level 11 by comparing (with the aid 
of a computer) the results with those predicted by formula (1.3). We found perfect 
agreement. Let us now argue that testing the function for level 0 < k < 11 is sufficient 
to demonstrate its validity. 

In order to find the generating function G we could have proceeded by brute force 
along the following lines. We can write G(L,  M ,  N )  in a non-manifestly positive form 
by expressing all the terms with a common denominator, as 

(3.14) 

Here. .. stands for 32 terms of the form L:’ Lt’Mf’M;’NYLN2Y. and the term written 
explicitly is thc one with maximal value of A, + A, + p1 + p2 + uI + u,. A form such 
as this one is possible for any G ,  and is unique given a set of elementary couplings. 
To obtain (1 - d)G we could multiply all the terms in (3.14) by a factor d raised to 
some power and fix the powers by looking at  the couplings level by level. This is 
clearly a finite (though quite lengthy) process, which would end when the power of 
the term with maximal value of A ,  + A, + p1 + p,  + v1 + v, was determined. An 
upper bound for the power of d multiplying a term L;‘Lt’Mf’M[’N,”’N,Y’ is simply 
$(A,+A,fp, +p2+u1+u2) (since this upper bound holds for all elementary couplings). 
For the last term in (3.14), this is 21/2.  So by using this procedure up to level 11 we 
fix uniquely the form of Gt. 

So (3.13) should be the correct generating function for G(5) WZNW fusion rules. 
The procedure we used to construct it provides a non-trivial test of the main result of 
[13]: the conjecture that there is a simple relation between G and G of the form (3.2), 
for some set F of forbidden couplings. 

t When applied to su(3), this argument shows that we only have t o  80 up to level 3 to fully fix the 
form of c. 
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4. Conclusion 

We have reviewed the construction of generating functions for fusion rules in WZNW 
models, first introduced in [13]. By displaying the generating function for &(5), we 
have demonstrated their existence for Lie algebras more complicated than su(2) and 
4 3 )  and that, moreover, this is not a particularity of su(N) Lie algebras. Fur- 
thermore we succeeded in constructing this new generating function according to the 
prescription proposed in [13]. This thus provides further support for the validity of 
this general scheme. 
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Appendix 

A l .  Calculation of tensor product coef ic ients  for so(5) using Young tableaux 

Since so(5) = sp(4), one can calculate tensor product coefficients for so(5) with Young 
tableaux techniques for sp(2m).  These are just slightly more complicated than the 
Littlewood-Richardson rules for the multiplication of Young tableaux for s u ( N )  [20]. 
Let The corresponding Young 
tableau has A, columns wi th  one box, A, columns with two boxes, etc. To state the 
multiplication rules we need a representation of the weight in terms of the numbers 
(ml ,  m2,. . .) =: (m) where m, is the number of boxes in the first row of the Young 
tableau, m2 is the number of boxes in the second row, etc. Thus for example the sp(4) 
weight A = (1 ,2)  has the following representation 

= (A,, , , .,A,,,) denote a sp(2m) highest weight. 

(1,2) =p = (3,2) 

The tensor product is given by 

(PI 

where stands for the Littlewood-Richardson product and / is its inverse. In the 
summation ( p )  can take the following values 

( p )  = ( O , O , O , .  . .), . . . , ( p l  , p 2 , .  . .) where p i  = min(mi, n i ) .  (A2) 

Let us recall the rules for the Littlewood-Richardson product of two Young tableaux 
[ZO]. In the second Young tableau we put nurnbers 1 in all the boxes of the first row, 
2 in all boxes of the second row, etc. Then we add all the boxes 1 to the first tableau 
and keep only the resulting tableaux which satisfy the following two conditions 
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(i) The resulting tableau must be regular: the number of boxes in a given row 

(ii) The resulting tableaux must not contain two boxes marked by 1 in the same 
must be smaller or equal to the number of boxes in the row just above. 

column. 

The tableaux which do not satisfy these conditions are ignored. To the resulting 
tableaux, one then adds all boxes marked by a 2 and again one keeps only the tableaux 
which satisfy (i) and (ii), where now in (ii) 1 is replaced by 2. One continues in this 
way until all the boxes of the second tableau in the original product have been used. 
In this process an additional rule must be respected: 

(iii) In counting from right to left and top to bottom, the number of 1s must always 
be greater than or equal to the number of 2.3, the number o f %  must always be greater 
or equal t o  the number of 3s, etc. 

Finally the resulting tableaux which contain columns with more boxes than the rank 
of the group (i.e. non-standard tableaux) must be properly modified. Let us describe 
this modification for sp(4) (and from now on we restrict ourself to this case). Let q, 
be the number of boxes in the ith column. Then for sp(4) the modification amounts 
to taking out of the first column h ,  boxes where h, = 29, - 6 (recall that for sp(4) 
qi > 2 for a non-standard tableau) and repeat the procedure for all columns with 
qi > 2. T i e  modified tabieau is (-jcjm - h)  = (-jc(m, - h,, m2 - h,) where c is 
the number of columns which have been affected. If after this operation the tableau 
is still non-standard, it is ignored. For instance a tableau with three boxes all in the 
first column has q, = 3 so h ,  = 0. Since the tableau is unaffected by the modification 
(i.e. i t  remains non-standard), it is rejected. On the other hand a tableau with four 
boxes all in  the first column (q ,  = 4 , h ,  = 2) is modified into a tableau with two boxes 
in the first column and i t  comes with a minus sign. 

Let us now illustrate the operation / by an example: 

In the first step we mark two boxes at  the edges of the first tableau with 1s. This 
will tell us how the first tableau can be decomposed into a product of a smaller 
tableau times (2,O) so that the division will give as a result this smaller tableau. 
Of course the marking must respect the rules stated above. Here there are three 
possibilities: 

The division then amounts to taking out the two boxes marked by a 1 and the result 
is 

We are now in position to present an example of the application of the general formulae 



146 L Be'gin et  a1 

(AI) and (A2) for g = sp(4). We will consider the tensor product: 

(L1) '8 (L1) = (2,1) '8 (2,1) 

In the summation, ( p )  can take the following values 

Thus we need the following divisions: 

AZ. Calculation of fusion rules for so(5) using formula (1.3) 

The implementation of formula (1.3) is very simple. At first we fix the level and 
consider the fusion rule corresponding to a given tensor product; say (A3). For 
sp(4) = so(5), the affine extension of = ( X l , X 2 )  is X = [k - A, - X 2 , X 1 , X 2 ] .  If 
on the right-hand side of (A3) there are terms with k - v1 - v2 < 0, one performs a 
shifted Weyl transformation of these weights in  order to transform them into integrable 
weights (for which aii three Dynkin indices are positive). It is the latter that  appear in 
the fina! form of the product. They appear with a sign given by the sign of the Weyl 
transformation necessary to make them integrable.When a non-integrable weight can- 
not be Weyl reflected into an integrable one, it is ignored. There are three fundamental 
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Weyl reflections, solsl  and s2, whose shifted actions on a weight A = [ A O , A 1 , A , ]  are 
(here p = [l,  1,1]): 

so.A = Sa(A + p)  - p = [-A, - 2, 2Ao + A I  + 2, A,] 

s1.A = [A, + A i  + 1, -A,  - 2, A, + A, + 11 
s2.A = [A,,Al + 2A2 + 2,-A, - .  - 21 

( A 4 4  

(A4b) 

6 4 4 4  

recall that  s,A = X - A,a, (no sum), and here 

a, = [2,-2,0] (II = [-1,2,-11 a, = [O,-2,2] 

In considering the affine extensions of weights V occuring in a given tensor product, 
only U, can be negative. Therefore the last factor (the right-most term) of the Weyl 
element implementing the transformation into an integrable weight is necessarily so. 
If uo = -1 ,  the shifted action of so on the weight is neutral, so that the weight can be 
ignored. If U, = -2, (A4o) shows that it is sufficient to consider only so. For U, < -2, 
more complicated combinations of the simple Weyl reflections are required. The sign 
of an element of the Weyl group w is ( - ) I  where I is the number of sp appearing in 

Let us now work out the fusion rules corresponding to the product (A3) level by 
level. Since the weights which are multiplied together are integrable only if k > 2, one 
first starts by considering the case where k = 2. The k = 2 affine extension of all the 
weights appearing on the right-hand side of (A3) is 

the decoIlyositio:: of w. (FG: ir.star,ce the sign of w = 6, is -1.) 

[2,0,01 [1,0,11 [0,0,21 1-1,0,31 2[0,2,01 
2[-1,2,1] [ -2 ,2 ,2]  [-2,4,0].  

The fourth and the sixth ones are ignored since uo=-l.  Furthermore one has 

s,.[-2,2,2] = [0,0,2] s,.[-2,4,0] = [0,2,0]. 

and these two will appear with a minus sign. Thus one has 

[0,1,11 x [0,1,11=[2,0,01+~1,0,11+[0,2,01. 

At level k = 3 ,  the affine extension of all the weights on the right-hand side of (A3) is 

[3,0,01 [2,0,11 [1,0,21 [0,0,31 2[1,2,01 

2[0,2,11 [-1,2,21 [-1,4,01. 

These are all integrable except for the last two, for which vo=-l and which are then 
ignored. Thus one finds 

[l,  1 ,  11 x [ l ,  1 , l )  = [3,0,0]+ [2,0,1]+[11 0,2]+[0,0,3]+2[1,2,0]+2[0,2,1]. 

For level k =4, the affine extensions of all the weights in (A3) are integrable so that  
there is no  truncation of the tensor product coefficients. The final result for all levels 



148 Z Be'ggin et a /  

can be written in a compact way, in the form (A3),  by indicating with subscripts the 
minimum value of the level (that is k o )  at which each term appears. The result is 

(1 ,1 )@(1 ,1 )=  ( O , O ) ~ f B ( ~ , ~ ) ~ ~ ( ~ ~ ~ ) 2 f B ( ~ ~ ~ ) ~ ~ ( ~ ~ ~ ) ~ f B ( ~ ~ ~ ) ~ ~ ~ ( ~ ~ ~ ) ~  

fB ( 2 , 2 ) 4  fB (4% 0)4 .  (-45) 

One sees that  in the tensor product (A3), there are two factors of (2,O) but a t  level 
2 one is cancelled by the shifted Weyl reflection of (4,O). The second factor ( 2 , O )  will 
then appear only at level 3. Similarly the term (0,2) is cancelled at level 2 and its 
first appearance is at  level 3. This example illustrates very clearly the fact that  the 
formula (1.2) is not a manifestly positive presentation of the fusion rules since the 
shifted Weyl action induces minus signs. 
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